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A B S T R A C T

Background: The nuclear receptor PPARγ is an effective pharmacological target for some types of metabolic
syndrome, including obesity, diabetes, nonalcoholic fatty liver disease, and cardiovascular disease. However, the
current PPARγ-targeting thiazolidinedione drugs have undesirable side effects. Danshensu Bingpian Zhi (DBZ),
also known as tanshinol borneol ester derived from Salvia miltiorrhiza, is a synthetic derivative of natural
compounds used in traditional Chinese medicine for its anti-inflammatory activity.
Methods: In vitro, investigations of DBZ using a luciferase reporter assay and molecular docking identified this
compound as a novel promising PPARγ agonist. Ten-week-old C57BL/6J mice were fed either a normal chow
diet (NCD) or a high-fat diet (HFD). The HFD-fed mice were gavaged daily with either vehicle or DBZ (50 mg/kg
or 100 mg/kg) for 10 weeks. The gut microbiota composition was assessed by analyzing the 16S rRNA gene
V3 + V4 regions via pyrosequencing.
Results: DBZ is an efficient natural PPARγ agonist that shows lower PPARγ-responsive luciferase reporter activity
than thiazolidinediones, has excellent effects on the metabolic phenotype and exhibits no unwanted adverse
effects in a HFD-induced obese mouse model. DBZ protects against HFD-induced body weight gain, insulin
resistance, hepatic steatosis and inflammation in mice. DBZ not only stimulates brown adipose tissue (BAT)
browning and maintains intestinal barrier integrity but also reverses HFD-induced intestinal microbiota dys-
biosis.
Conclusions: DBZ is a putative PPARγ agonist that prevents HFD-induced obesity-related metabolic syndrome
and reverse gut dysbiosis.
General significance: DBZ may be used as a beneficial probiotic agent to improve HFD-induced obesity-related
metabolic syndrome in obese individuals.

1. Introduction

Peroxisome proliferator activated receptors (PPARs) are a group of

nuclear receptors that includes PPARα, PPARβ/δ, and PPARγ. These
receptors play key roles in the regulation of cellular proliferation and
differentiation, carbohydrate, lipid, and protein metabolism, and
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metabolic homeostasis in vivo [1,2]. PPARγ, which is mainly present in
adipose tissue, the intestine and macrophages, is well known for its role
in regulating adipogenesis, insulin sensitivity, and inflammation [3].
Increasing evidence indicates that PPARγ is involved in the etiology and
pathogenesis of numerous conditions associated with metabolic syn-
drome, including obesity, diabetes, NAFLD, and cardiovascular disease
[4,5], making this receptor an attractive pharmacological target for the
treatment and prevention of the above-mentioned metabolic disorders
[6]. Currently, thiazolidinediones (TZDs), which are potent PPARγ
agonists, are clinically effective for type 2 diabetes but can lead to
serious side effects, such as congestive heart failure, edema, osteo-
porosis, weight gain and possibly bladder cancer [7]. Thus, the devel-
opment of unique PPARγ partial agonists that are effective against
metabolic syndrome but lack negative side effects is a promising ap-
proach.

In addition to the Human Microbiome Project and the National
Microbiome Initiative launched in the United States, research on the
microbiome is rapidly being pursued in the fields of health care, agri-
culture, industry and environmental science [8,9]. Microbes confer
unique properties upon their hosts, and gut microbes affect many as-
pects of host metabolism and physiology [10]. Gut dysbiosis (also
known as microbial imbalance) has been shown to affect the patho-
genesis of many diseases, including obesity, diabetes, non-alcoholic
fatty liver disease (NAFLD) [11], chronic fatigue syndrome, in-
flammatory bowel disease and cancer [12,13]. A high-fat diet (HFD)
has been reported to cause gut dysbiosis (i.e. to increase the ratio of
Firmicutes to Bacteroidetes at the phylum level) which is considered an
etiopathogenesis of obesity and its related metabolic disorders [14–16].
Thus, reversing intestinal dysbiosis may protect against obesity devel-
opment.

Danshensu Bingpian Zhi (DBZ), which is also known as tanshinol
borneol ester [1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl-3-(3,4-dihy-
droxyphenyl)-2-hydroxy-propanoate], is a synthetic derivative of nat-
ural compounds used in traditional Chinese medicine (TCM) formula
Fufang Danshen (FFDS) [17,18]. The FFDS has been indicated to be
effective on treating cardiovascular and cerebrovascular diseases for
many years in China. DBZ is a novel synthetic compound that chemi-
cally links Danshensu (tanshinol) and Bingpian (borneol), and it has not
been approved for clinical use in the patients. Whereas tanshinol is a
natural compound derived from Salvia miltiorrhiza, that has been shown
to exert various beneficial activities, including improvement of micro-
circulation and reduction of endothelial dysfunction and platelet ag-
gregation [17,19]. Fufang Danshen Diwan (Compound Danshen Drip-
ping Pills) has successfully completed phase 3 clinical trials in the
United States (NCT01659580) for the treatment of chronic stable an-
gina pectoris and ischemic heart disease [20]. We previously demon-
strated that DBZ inhibited LPS-induced inflammation and macrophage
lipid accumulation [17]. Preliminary pharmacological experiments
showed that DBZ attenuated atherosclerosis in apolipoprotein E-defi-
cient (ApoE−/−) mice (unpublished observations). Here, we in-
vestigated the metabolic influence of the unique PPARγ partial agonist
DBZ on mice fed a HFD and evaluated whether its beneficial effects
were related to the restoration of the normal gut microbiota.

2. Material and methods

2.1. Materials

DBZ was synthesized in Dr. Xiaohui Zheng's laboratory (Northwest
University, China) and verified by liquid chromatograph-mass spec-
trometry (LC-MS) and nuclear magnetic resonance spectroscopy
(purity: 99.6%) [17]. Lipopolysaccharides (LPS), troglitazone (Tro),
pioglitazone (Pio), WY14643, GW1516 and GW9662 were obtained
from Sigma-Aldrich (USA). Normal chow diet (NCD) and HFD (60%
kcal from fat) were obtained from Beijing HFK Bioscience Co. Ltd.
(China).

2.2. Cell culture and luciferase reporter assay

HEK 293 T and RAW264.7 cells were obtained from ATCC and
maintained in Dulbecco's modified Eagle's medium (DMEM) and RPMI
1640 medium containing 10% fetal bovine serum (FBS, Biowest) and
1% penicillin-streptomycin, respectively. Dual luciferase assays were
performed in 24-well plates with Lipofectamine 2000 transfection re-
agent (Invitrogen, USA) and measured using a Dual-Luciferase Reporter
Assay Kit (Promega, USA) [17]. HEK 293 T cells were treated with DBZ
(0–20 μM) and transfected with pCMX-PPARγ, pCMX-PPARα or
pcDNA-hPPARβ/δ and PPRE × 3-TK-Luc. RAW264.7 cells were treated
with Pio (10 μM) or DBZ (0–20 μM) and transfected with PPRE × 3-TK-
Luc and were transiently transfected with NF-κB-Luc and co-treated
with or without LPS (1 μg/mL), DBZ (20 μM), GW9662 (10 μM), and
pSP27/shPPARγ or pSP27/Mock. The shPPARγ and Mock sequences are
listed in Supplementary Table 1 and the interference verification is
shown in Supplementary Fig. 2. The pRL-TK construct was co-trans-
fected as an internal control to verify the transfection efficiency. The
results are representative of obtained from at least three replicate ex-
periments.

2.3. Animals

All procedures were conducted according to the guidelines of the
Ethics and Animal Welfare Committee of Beijing Normal University.
Ten-week-old C57BL/6 J male mice (NCD: n= 6, HFD: n = 10, HFD
+ 50DBZ and HFD + 100DBZ: n = 12 each, Vital River Laboratory
Animal Technology Co. Ltd., China) were housed with 3–4 mice/cage,
in a controlled environment (12-h light/dark cycle) with water and
food available ad libitum. The DBZ groups HFD + 50DBZ and HFD
+ 100DBZ were fed a HFD and administered DBZ at doses of 50 or
100 mg/kg body weight (BW), respectively, by gavage once daily for
10 weeks. Intraperitoneal glucose tolerance tests (IGTTs) and insulin
tolerance tests (ITTs) were performed at the 8th and 9th weeks using
previously described methods [21]. Feces were collected at the end of
the 10th week for subsequent analysis. The epididymal white adipose
tissue (Epi-WAT), perirenal-WAT (Per-WAT), mesenteric-WAT (Mes-
WAT), liver, brown adipose tissue (BAT) and gastrointestinal system
were carefully collected, and weighted after sacrifice and then stored at
−80 °C.

2.4. Histochemical and cytological evaluation

The Epi-WAT and BAT were fixed in 4% paraformaldehyde, em-
bedded in paraffin, sectioned at 5-μm thickness, and stained with he-
matoxylin and eosin (H & E) using standard procedures. For im-
munohistochemistry, BAT sections were incubated with an anti-
uncoupling protein 1 (UCP1) antibody (Sigma, 1:100), followed by an
anti-rabbit TRITC-labeled (EarthOx, 1:200) secondary antibody. Frozen
liver sections (8–10 μm) were stained with Oil Red O (ORO). Transwell
migration assays were performed in 24-well plates containing poly-
carbonate membrane inserts (Corning); the migrated cells were stained
with 0.1% Giemsa and quantified using ImageJ software [22]. The
adipocyte sizes were analyzed using the Cell Profiler Software as pre-
viously described [23].

2.5. Biochemical analysis

Fasting blood samples were obtained from the orbital venous plexus
of each mouse at the end of the experiment. The serum triacylglycerol
(TG), total cholesterol (TC), and glucose levels and the liver TG levels
were measured using commercially available kits (Applygen, China).
The serum insulin, tumor necrosis factor α (TNFα) and interleukin-6
(IL-6) concentrations were measured using commercially available
ELISA kits (Neobioscience, China). Insulin resistance was determined
based on the homeostasis model index of insulin resistance (HOMA-IR:
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insulin × glucose / 22.5), and insulin sensitivity was calculated based
on the quantitative insulin check index of insulin sensitivity (QUICKI:
1 / [log (insulin) + log (glucose)]). The serum endotoxin content was
measured using a quantitative chromogenic tachypleus amebocyte ly-
sate kit (Chinese Horseshoe Crab Reagent Manufactory, China).

2.6. Gene and protein expression analysis

For quantitative real-time PCR analysis, total RNA was extracted
from tissues using a RNAprep Pure Kit (Tiangen, China). Reverse
transcription was performed using oligdT-18 and M-MLV transcriptase
(Promega, USA). The assay was performed using SYBR Green qPCR
SuperMix (Transgen Biotic, China) on an ABI 7500 real-time PCR
system as described previously [22]. The primers used are listed in
Supplementary Table 1. For the western blot analysis, tissue proteins
were extracted using RIPA lysis buffer. Western blotting was performed

using standard procedures. The membranes were incubated with pri-
mary antibodies against toll-like receptor 4 (TLR-4) (1:1000), nuclear
factor kappa B (NF-κB) (1:2000), UCP1 (1:5000) and β-actin (1:6000)
followed by the appropriate secondary antibodies (EarthOx, 1:6000).
The intensity of the protein bands was quantified using ImageJ.

2.7. Molecular docking

The three-dimensional structure of the ligand-binding domain of
human PPARγ has been determined (Protein Data Bank, ID: 2VSR) [24].
The DBZ structure was built using Molecule Builder in MOE. The force
field, receptor-ligand affinity, and reasonable binding models were
analyzed using AutoDock. Predicted binding poses were visualized, and
ligand-protein interactions were analyzed using PyMOL; the binding
site was defined as a 6-Å sphere.
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Fig. 1. DBZ decreases body weight gain and fat accumulation in mice fed a HFD. Effects of DBZ treatment (50 mg/kg/d or 100 mg/kg/d) on body weight gain and the calculated area
under the curve AUC (A), the Epi-WAT weight and Epi-WAT/BW ratio (B), the Per-WAT weight and Per-WAT/BW ratio (C), and the Mes-WAT weight and Mes-WAT/BW ratio (D) in mice
fed a NCD or a HFD for 10 weeks (n = 6–12). (E) H & E staining of Epi-WAT sections (scale: 100 μm). (F) Adipocyte size distribution and mean epididymal adipocyte size (inner) in each
group (n = 5 mice per group). (G) Relative mRNA expression of lipogenesis-related genes in the Epi-WAT was measured by real-time PCR analysis. Values are expressed as the
mean ± SEM. *P < 0.05; **P < 0.01; ***P < 0.001 compared with NCD/Con, #P < 0.05; ##P < 0.01; ###P < 0.001 compared with HFD.
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2.8. Gut microbiota profiling

Bacterial genomic DNA was isolated using a QIAamp DNA Mini Kit
(Qiagen, Germany). The concentration and purity of the isolated DNA
were monitored by electrophoresis on 1% agarose gels. Then the DNA
was PCR amplified using specific bacterial primers (Supplementary
Table 1) targeting the 16S rRNA V3 + V4 regions. A metagenomic se-
quencing library was generated using the Illumina MiSeq platform
(Biomarker Technologies, China). The reads were merged using FLASH
[25] and quality filtered using Trimmomatic [26]. The resulting se-
quences were grouped into operational taxonomic units (OTUs) based
on sequence with a 97% threshold of similarity using UPARSE [27]. The
alpha diversity analysis included OTU-Venn diagrams, the OUT
number, Shannon index curves, the OTU rank, and rarefaction analysis;
additionally, the Shannon, Chao 1, and Simpson indices were calcu-
lated. The beta diversity analysis included principal coordinate analysis
(PCoA), principal component analysis (PCA), non-metric multi-
dimensional scaling (NMDS), and the construction of a heatmap of the
key OTUs identified in the redundancy analysis (RDA). These analyses
were performed using QIIME [28]. Linear discriminant analysis effect
size (LEfSe) analysis was used to quantify the biomarkers among groups
of samples [29] with LDA values> 4.

2.9. Statistical analyses

Results are expressed as the means± SEM. Statistical analyses were
performed using SPSS. Differences between groups were analyzed using
ANOVA followed by Tukey's multiple comparison test or an unpaired
Student's t-test and were considered significant at P < 0.05. The RDA
was considered statistically significant at P < 0.01.

3. Results

3.1. DBZ prevents HFD-induced body weight gain

Using a mouse model of obesity, we observed that the HFD-induced
a significant increase in body weight and in the Epi-WAT, Per-WAT, and
Mes-WAT fat mass compared with mice fed the NCD. Compared with
the vehicle-treated mice, treatment with DBZ (50 or 100 mg/kg/day)
by gavage markedly prevented body weight gain and fat accumulation
in the HFD-fed mice (Fig. 1A–D). Histological assessment of the Epi-
WAT sections showed that the sizes of adipocytes were significantly
decreased in the mice that received DBZ treatment and the HFD, re-
flecting an increased frequency of smaller adipocytes and a decreased
frequency of larger adipocytes (Fig. 1E and F). As shown in Fig. 1G, DBZ
treatment, especially at the higher dose (100 mg/kg/day), lowered the
expression of lipogenic genes, including fatty acid synthase (FAS),
sterol regulatory element binding protein 1c (SREBP1c), acetyl-CoA
carboxylase (ACC-1), fatty acid transport protein 4 (FATP-4), and CD36.

3.2. DBZ improves HFD-induced insulin resistance and decreases liver
steatosis and systemic low-grade inflammation

As obesity is closely related to insulin resistance, we measured the
fasting blood glucose and serum insulin levels of the mice and calcu-
lated their QUICKI and HOMA-IR values according to previous for-
mulas. As shown in Fig. 2A–D, DBZ treatment significantly improved
insulin resistance in obese mice, restored normal serum fasting blood
glucose and insulin concentrations, and nearly normalized the QUICKI
and HOMA-IR indices. The IGTT and ITT results confirmed the bene-
ficial effects of DBZ on insulin levels and glucose tolerance in HFD-fed
mice (Fig. 2E–F). Next, we measured the serum and liver lipid contents.
As shown in Fig. 2G–I, the serum and liver TG concentrations were
significantly decreased in the DBZ-treated mice, whereas the serum TC
concentration displayed little change. ORO staining of liver sections
confirmed that DBZ inhibited lipid accumulation in the livers of the

obese mice (Fig. 2J). Because HFD-induced obesity, insulin resistance,
and liver steatosis are strongly associated with low-grade chronic in-
flammation, we also tested the effects of DBZ on endotoxemia and the
serum levels of inflammatory cytokines (TNFα and IL-6). As shown in
Fig. 2K–M, DBZ supplementation reduced the serum endotoxin and
TNFα concentrations to near-normal levels in the HFD fed mice. The
occurrence of endotoxemia via the TLR-4 signaling pathways controls
the production of pro-inflammatory factors in the liver and gives rise to
the chronic inflammation associated with HFD-induced obesity [30].
DBZ administration suppressed TLR-4 and NF-κB protein expression in
the liver compared with the untreated mice fed the HFD (Fig. 2N).

Taken together, these results show that DBZ treatment prevents
HFD-induced obesity, insulin resistance, hepatic steatosis, and systemic
low-grade inflammation.

3.3. DBZ blocks LPS-induced NF-κB activation and macrophage migration,
partly by functioning as a PPARγ agonist

Previous studies have shown that DBZ mediates anti-inflammatory
activity by inhibiting NF-κB [17] and that activation of PPARγ sup-
presses inflammation by maintaining co-repressors acting at the pro-
moters of NF-κB target genes [31]. We speculated that the inhibition of
NF-κB by DBZ resulted from PPARγ activation. The luciferase reporter
assays showed that DBZ induced PPARγ-responsive luciferase reporter
activity in HEK 293 T and RAW 264.7 cells (Fig. 3A). Meanwhile, DBZ
had little activation on PPARα and no effect on PPARβ/δ (Supple-
mentary Fig. 1A and B). To examine whether the inhibition of NF-κB by
DBZ depended on the PPARγ pathway, RAW264.7 cells were co-trans-
fected with both NF-κB-responsive luciferase reporter genes and the
shPPARγ plasmid or treatment with GW9662, a pharmacological in-
hibitor of PPARγ, followed treated with DBZ and then stimulated by
LPS (1 μg/mL). GW9662 mildly enhanced NF-κB activity in RAW264.7
cells (13.8%). As shown in Fig. 3B and C, compared with treatment with
DBZ alone (20 μM), co-treatment with shPPARγ or GW9662 restored
NF-κB activity (36.4% and 41%, respectively). Moreover, co-treatment
with GW9662 abrogated the inhibitory effect of DBZ on LPS-induced
macrophage migration in RAW264.7 macrophages (Fig. 3D and E).

To further characterize the interaction of DBZ with PPARγ, we
performed a molecular docking analysis. The docking results showed
that DBZ could fit into the ligand-binding pocket of human PPARγ
(Fig. 3F). Additionally, the hydrogen bonds at Glu291 and Ser342
(potential) and hydrophobic interactions at Met348 and Ile281 main-
tained the binding stability (Fig. 3G). Collectively, these data show that
DBZ abrogates LPS-induced NF-κB activation and macrophage migra-
tion, partly through the activation of PPARγ.

3.4. DBZ alters the BAT and intestinal morphology of in HFD-fed mice

BAT is a highly active metabolic tissue that regulates energy ex-
penditure and reduces obesity [32]. As observed in Fig. 4A, BAT from
the HFD mice contained some large lipid droplets, which is a typical
feature of the so-called whitening of BAT in response to a HFD chal-
lenge. DBZ treatment resulted in smaller lipid droplets and increased
UCP1 protein expression in the BAT (Fig. 4B). Gene expression analysis
showed that DBZ treatment increased the expression of genes involved
in mitochondrial biogenesis and thermogenesis (PGC1α, UCP1, UCP2,
and adrenoreceptor beta 3(ADRB3)), fatty acid uptake (CD36 and
FABP4), and fatty acid catabolism (lipoprotein lipase (LPL) and carni-
tine palmitoyltransferase 1 beta (CPT1β)) (Fig. 4C–J).

Recent studies have shown that the small intestines of animals fed a
HFD are shorter in length, weigh less, and have decreased intestinal
permeability compared with those of animals fed a NCD [33,34]. DBZ
administration led to a significant increase in the intestinal length
(Fig. 5A). Furthermore, the main increase in length occurred in the
small intestine rather than in the colon (Fig. 5B and C). We weighed
different segments of the gastrointestinal tract (stomach, small
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intestine, cecum, and colon) and normalized them to the mouse BW. As
shown in Fig. 5D–H and Supplementary Fig. 3A–E, the gastrointestinal
tract, especially the cecum, weighed more in the DBZ-treated groups.
Morphologically, feeding the animals with HFD led to a notable re-
duction in the villus length in the proximal jejunum, whereas treatment
with DBZ normalized the villus length (Fig. 5I and J). As expected, DBZ
treatment caused gene expression of the tight junction protein occludin
to revert to a near-normal level (Fig. 5K).

3.5. DBZ modulates the gut microbiota composition in HFD-fed mice

The gut microbiota composition is linked to obesity and its related
metabolic disorders. Therefore, we evaluated the effects of DBZ treat-
ment on the gut microbiota by sequencing the bacterial 16S rRNA
(V3 + V4 region) gene. In total, 1,103,762 clean tags (Supplementary
Table 2) and 570 OTUs were obtained. The OTU-Venn and OTU number

illustrated the differences among groups (Fig. 6A and Supplementary
Fig. 4A). The Shannon curves, OTU rank abundance, rarefaction curves
and Shannon, Chao 1, and Simpson indices showed that the HFD-fed
group displayed no significant differences in richness compared with
the NCD-fed group, and that DBZ treatment (at 50 mg/kg/day) resulted
in a mild decrease in the richness of the gut microbiota (Fig. 6B and
Supplementary Fig. 4B–E). The UniFrac PCoA, NMDS, and PCA re-
vealed distinct clustering of the microbiota composition in each group,
with the DBZ treatment groups showing microbial compositions similar
to the HFD groups (Fig. 6C and Supplementary Fig. 4F–G). The phylum
level analysis showed that the HFD-fed mice had a significantly in-
creased Firmicutes to Bacteroidetes ratio compared with the NCD-fed
mice, whereas DBZ treatment increased the relative abundance of
Bacteroidetes and decreased the relative abundance of Firmicutes,
thereby reducing the Firmicutes to Bacteroidetes ratio (Fig. 6D). Similar
results were observed upon assessing the details of each sample at the
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genus level (Fig. 6E). Strikingly, DBZ supplementation at 100 mg/kg/
day resulted in a significant increase in Akkermansia, which are bene-
ficial bacteria belonging to phylum Verrucomicrobia. The LEfSe analysis
was used to show the marker taxons of each group (Supplementary
Fig. 5). As shown in Fig. 6F–I, DBZ treatment increased the levels of the
intestinal mucin-degrading bacteria Akkermansia, which are considered
probiotics that prevent the development of obesity, diabetes and in-
flammation, and suppressed HFD-induced pernicious bacteria, in-
cluding Helicobacter marmotae, Odoribacter, and Anaerotruncus.

The RDA identified gut microbiota phylotypes whose abundances
were changed by DBZ treatment (HFD vs HFD + 50DBZ or HFD vs
HFD + 100DBZ). As shown in Fig. 7 and Supplementary Data 1, 121
predictive OTUs differed dramatically between the HFD group and each
of the DBZ treatment groups (P < 0.01). In the HFD-fed mice, treat-
ment with 50 or 100 mg/kg/day DBZ altered 48 (37 decreased and 11
increased), and 36 OTUs (31 decreased and 5 increased), respectively.
All the decreased OTUs were toward to the same direction of NCD-fed
mice. Taken together, these results suggested that DBZ supplementation
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corrected the gut dysbiosis in obese mice.

4. Discussion

Several previous studies have shown that DBZ inhibits LPS-induced
inflammation and lipid accumulation in macrophages and decreases the
TC, TG, and low-density lipoprotein cholesterol (LDL-c) levels and even
atherosclerosis in rats [17,35]. In the present study, we evaluated the
effects of DBZ administration at doses of 50 and 100 mg/kg/day for
10 weeks on the development of HFD-induced obesity and metabolic
disorders and the composition of the gut microbiota in mice. Our results
showed that DBZ treatment prevented obesity and its related metabolic
disorders. Mechanistically, the metabolic benefits of DBZ administra-
tion may be explained by the inhibition of inflammation, browning of
the BAT, restoration of intestinal barrier integrity and reversal of gut
dysbiosis.

Recent reports have suggested that natural compound activators of
PPARγ can improve metabolic syndrome and type 2 diabetes in vivo and
have fewer side effects than potent synthetic PPARγ agonists (TZDs).
For example, amorphastilbol was shown to improve glucose and lipid
metabolism and was used successfully to treat diabetes and related
metabolic disorders, including obesity and hepatomegaly, in db/db
mice [36]. Honokiol reduced body weight gain and prevented hy-
perglycemia in diabetic KKAy mice [7]. Amorfrutins (amorfrutin 1 and
amorfrutin B) markedly improved insulin and glucose tolerance and

other metabolic parameters without concomitant fat storage in the
WAT and liver in diet-induced obese and db/db mice [37,38]. Here, the
putative PPARγ agonist DBZ showed lower PPARγ-responsive luciferase
reporter activity than troglitazone and pioglitazone, had excellent ef-
fects on the metabolic phenotypes and exhibited no unwanted adverse
effects in our obese mouse model. What's more, we demonstrated DBZ
attenuated atherosclerosis in ApoE−/− mice, and attenuated ox-LDL-
induced foam cell formation and promoted cholesterol efflux in mac-
rophages, likely through the activation of LXRα (unpublished ob-
servations). These results revealed that DBZ has pleiotropic effects in
lipid and glucose metabolism through lipid metabolic nuclear receptors.

BAT maintains thermoregulation in newborns and is the main organ
involved in non-shivering thermogenesis in mammals. BAT activity
enhances thermogenesis from glucose and lipids, thereby protecting
against obesity and chronic metabolic disease, including diabetes,
dyslipidemia, atherosclerosis, and NAFLD [39,40]. In our previous
study, we found melatonin stimulated BAT browning, and it might be
associated with gut microbiota [41]. As shown in Fig. 4, DBZ reshaped
the brown fat by increasing the mRNA and protein levels of the brown
adipocyte marker UCP1 and enhancing lipid uptake into the BAT and
thermogenesis. The PPAR family plays key roles in BAT adipogenesis
and functions via recruiting diverse cofactors [42]. DBZ activates
PPARγ transcriptional activity and may contribute to the beneficial
phenotype in the BAT in cooperation with PGC1α.

Gut dysbiosis is closely related to obesity, diabetes, and NAFLD
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[43,44]. High fat diet and obesity relate to a specific gut dysbiota,
which is enriched in Firmicutes and lack of Baterioidetes. Gut microbiota
can also play role in the development of diabetes and NAFLD, in part,
increased the endotoxemia and activation of the TLR-4 signaling cas-
cade [43]. And some specific microbiota such as Akkermansia mucini-
phila might be decreased in diabetes and when administered to mice
exerted antidiabetic effects [44]. Therefore, the intestinal microbiota
represents a novel therapeutic target for the treatment of these meta-
bolic disorders. Measurement of the effects of DBZ supplementation on
the gut microbiota can provide insights into the mechanism by which
DBZ exerts its anti-obesity and anti-diabetic effects. As shown in Fig. 6,
DBZ treatment notably increased the abundance of Bacteroidetes and
reduced the abundance of Firmicutes, and then decreased the Firmicutes
to Bacteroidetes ratio in the HFD-fed mice. DBZ meanwhile resulted in a
higher relative abundance of Akkermansiain compared with the mice
that received a HFD alone. The mucin-degrading bacteria Akkermansia
reside in the mucus layer of the intestine, where they help maintain a
healthy mucosa [45,46]. In rodents and humans, the abundance of
these bacteria is inversely correlated with diabetes and overweight
[47,48]. Treatment with live Akkermansia protects against diet-induced
obesity and intestinal barrier dysfunction in mice [49]. As shown in
Fig. 5, DBZ alters the intestinal morphology and restores intestinal
permeability, which is related to the presence of Akkermansiain to some
extent. Serum endotoxin mainly originates from the gut microbiota and
is the primary agent of low-grade inflammation [50]. DBZ decreases
intestinal permeability, thereby preventing the transfer of endotoxins
from the gut to the circulatory system. DBZ treatment reduced the
endotoxemia, suppressed TLR-4 signaling cascade, and then alleviated
systemic low-grade inflammation. That association is, in part, due to

the changes in host intestinal morphology and microbial ecology. He-
licobacter marmotae [51] is thought to cause enterohepatic disease in A/
J mice. Odoribacter [52] and Anaerotruncus [45] were positively asso-
ciated with obesity and glucose tolerance in diet-induced obese mice
and type 2 diabetic db/db mice, and Anaerotruncus [52] was negatively
correlated with the cecum weight. In the present study, the levels of
these species were reversed by DBZ treatment in HFD-fed mice, which
was consistent with the animals' phenotypes and metabolic parameters.
The specific mechanism needs further research. Meanwhile, we should
note that it is unclear whether DBZ treatment can alter gut microbiota
under a normal diet and the change of gut microbiota composition is
not strictly concentration-dependent under the high fat diet.

In summary, we found that DBZ, which is a natural compound de-
rivative and a putative PPARγ agonist, protects mice against HFD-in-
duced obesity, insulin resistance, hepatic steatosis, and low-grade sys-
temic inflammation. DBZ also modulates gut microbiota dysbiosis by
increasing Bacteroidetes to Firmicutes ratio, increasing the relative
abundance of Akkermansia, and reducing the levels of the harmful
bacterium Helicobacter marmotae. It is hoped that DBZ can be used as a
therapeutic agent, or it represent a novel pharmacophore to develop
novel therapeutic agents for the treatment of metabolic diseases.
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Fig. 6. DBZ alters the composition of the gut microbiota in HFD-fed mice. OTU-Venn (A) and Shannon curves and the Shannon index (B) of the gut microbiota in each group. Values are
presented as the mean ± SEM. *P < 0.05 vs. NCD, #P < 0.05 vs. HFD. (C) PCoA score plot based on the Bray-Curtis analysis in each sample. The relative abundances of the gut
microbiota at the phylum (D) and genus levels (E). The relative abundances of Akkermansia (F), Helicobacter marmotae (G), Odoribacter (H), and Anaerotruncus (I) obtained from the fecal
microbiota are from the LEfSe results (P < 0.05). The solid lines indicate the mean.
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