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Abstract 

 

Multiple myeloma (MM) is the second most common hematologic cancer, 

characterized by abnormal accumulation of plasma cells in the bone marrow. The 

extensive biological and clinical heterogeneity of MM hinders effective treatment and 

etiology research. Several molecular classification systems of prognostic impact have 

been proposed, but they do not predict the response to treatment nor do they correlate 

to plasma cell development pathways. Here we describe the classification of MM into 

two distinct subtypes based on the expression levels of a gene module co-expressed 

with MCL1 (MCL1-M), a regulator of plasma cell survival. The classification system 

enabled prediction of the prognosis and the response to bortezomib-based therapy. 

Moreover, the two MM subtypes were associated with two different plasma cell 

differentiation pathways (enrichment of a preplasmablast signature versus aberrant 

expression of B cell genes). 1q gain, harboring 56 of the 87 MCL1-M members 

including MCL1, was found in about 80% of the MM with upregulated MCL1-M 

expression. Clonal analysis showed that 1q gain tended to occur as an early clonal 

event. Members of MCL1-M captured both MM cell-intrinsically acting signals and 

the signals regulating the interaction between MM cells with bone marrow 

microenvironment. MCL1-M members were co-expressed in mouse germinal center 

B cells. Together, these findings indicate that MCL1-M may play previously 

inadequately recognized, initiating role in the pathogenesis of MM. Our findings 

suggest that MCL1-M signature-based molecular clustering of MM constitutes a solid 
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framework toward understanding the etiology of this disease and establishing 

personalized care. 

 

 

 

Article Summary: A pathogenic mechanism-guided molecular classification would 

facilitate treatment decision and etiology research of multiple myeloma. Based on the 

expression levels of a gene module co-expressed with MCL1, we have established a 

classification scheme assigning multiple myeloma into two subtypes with distinct 

prognosis, treatment responses and pathogenic backgrounds.    
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Introduction 

 

Multiple myeloma (MM) represents the second most common hematologic 

malignancy, characterized by an abnormal accumulation of clonal antibody-producing 

plasma cells in bone marrow (BM) 
1
. With the introduction of proteasome-inhibitors 

such as bortezomib and immunomodulatory drugs, outcome in MM has been 

significantly improved. However, MM remains incurable 
1,2
. MM is characterized by 

a high degree of variabilities in overall survival (OS) and responses to treatment with 

individual drugs or their combinations. Moreover, the biological mechanisms 

underlying these clinical differences hindering the development of personalized care 

are inadequately understood. 

To facilitate treatment decisions and improve our understanding of tumor biology, 

a simple and reliable molecular classification system is needed. Several such systems 

have been proposed on the basis of gene expression profiling (GEP). Bergsagel et al. 
3
 

identified eight MM subtypes with distinct cyclin D expression and translocation 

patterns. Using unbiased hypothesis-free transcriptome analysis, Zhan et al. and Broyl 

et al. identified 7–10 molecular subtypes of MM 
4,5
. This enabled the division of MM 

into high-risk or low-risk groups in studies with patients receiving total therapy 2 

(TT2) 
5
 or TT3 

6
. Moreover, GEP signatures correlated with the prognosis of MM 

have been described (for example UAMS-70 and the related UAMS-17, UAMS-80, 

IFM-15, Millennium-100 and EMC-92) 
6-10

. Further, gene proliferation index 

(GPI-50), MRC-IX-6, and centrosome amplification index were found to be 
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prognostic for MM patients 
11-13

. Recently, Palumbo et al. proposed a revised 

international staging system (R-ISS) based on the serum β2-microglobulin level, the 

serum lactate dehydrogenase (LDH) level, and high-risk chromosome abnormalities 

[including del(17p), t(4;14), and t(14;16) translocations], which also provides 

prognostic information 
14
. These studies were important steps forward in establishing 

an objective molecular classification for MM. However, three issues remain 

unaddressed: (1) the capacity to predict the treatment response 
15,16

, (2) the correlation 

between subtypes and specific pathways of plasma cell development 
17
, and (3) the 

relatedness of classifiers to MM pathogenesis.   

To address these questions, we explored whether gene co-expression modules 

around key signaling pathways conserved between germinal centre (GC) formation 

and MM pathogenesis might enable the molecular classification of MM. We were 

specifically interested in the dysregulation of gene networks controlling B cell 

differentiation to plasma cells in GC because these may play a crucial role in MM 

initiation 
18
. Here we describe the identification of genes consistently co-expressed 

with Myeloid cell leukemia 1 (MCL1-module, MCL1-M) in MM, and their application 

in classifying MM into two major subtypes that are characterized by differences in 

prognosis, response to bortezomib-based treatment, and correlation to plasma cell 

development. These findings pave the way for establishing personalized care and 

improving our understanding of the etiology of MM.  
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Materials and Methods 

The data of normalized global transcriptome, array CGH (aCGH) and whole 

exome sequencing for bone marrow CD138
+
 plasma cells of newly diagnosed and 

untreated MM, and the corresponding clinical characteristics and treatment responses 

from GSE2658 
5
, GSE19784 

4,19
, GSE26863 

20
, GSE29023 

21
, and  Lohr et al. 

22
 were 

retrieved from the Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/), or 

the MMRF website (https://research.themmrf.org/), or dbGap (accession no. 

phs000348.v2. p1). Pearson correlation coefficient analysis in GSE2658 
5
 was used to 

identify gene co-expression modules with the regulators of GC formation 
23,24

 as the 

seed genes. MCL1-M contained the top 106 probe sets most correlated with MCL1 

expression (200797_s_at). MCL1-M, complemented with the MCL1-M low MM 

identifier, was used in unsupervised consensus clustering 
25
 to define stable and robust 

clusters of MCL1-M low or MCL1-M high MM.  

Details regarding survival analysis, correlation to plasma cell development, the 

frequency and clonality of SCNAs and driver mutations in the MCL1-M signature-

defined MM subtypes, and Cox regression analysis are provided in Supplementary 

Materials. 
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Results 

 

Identification of MCL1-M and molecular clustering of MM based on MCL1-M 

signature    

To identify gene network(s) conserved in plasma cell development, we used 

transcriptome data from the MM data set GSE2658 
5
 to construct gene co-expression 

modules around key regulators of GC formation, including BCL6, BLIMP1, IRF4, 

IRF8, MCL1, MTA3, NF-kB, PAX5, and XBP1 
23,24

. Unsupervised hierarchical 

clustering in five data sets (GSE2658 
5
, GSE19784 

4,19
, MMRF, GSE26863 

20
 and 

GSE29023 
21
, Table S1) showed that MM samples were clustered into two subtypes 

with high or low expression of MCL1-M and XBP1 module (XBP1-M); the 

expression of the other co-expression modules did not enable clustering of MM 

samples. However, frequent alteration of XBP1 in MM genome has not been reported, 

and the signature of XBP1-M, with members predominantly residing in protein 

synthesis pathway, did not enable a clustering of MM samples into subtypes with 

prognostic and predictive features. Therefore, the remaining investigations focused on 

the MCL1-M signature. 

MCL1 is essential for germinal center formation and memory B cell generation 
26
, 

and is indispensable for the maintenance of long-lived plasma cells in the BM 
27
. 

Frequent gain of the chromosomal region 1q21, where MCL1 is located, was reported 

to be associated with MM progression and short survival of the patients 
28
. Of the 87 

known genes in MCL1-M, 63 are located on 1q (Figure S1 and Table S2); a gene 

dosage-dependent expression was found for 39 of these 63 in MM with “MCL1-M 
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high” signature (Table S2). With the exceptions of MCL1, IL6R, LDH (also known as 

LDHA), PSMB4, PSMD4, UBE2Q1, ANP32E, ATF3, CCT3, and COPA, which are 

known to be involved in myeloma pathogenesis 
7,29-31

, the remaining MCL1-M 

members have not been extensively studied in MM biology. MCL1-M genes are 

enriched in Reactome pathways of antigen processing and presentation functions, 

cytokine signaling pathways and interferon response signaling 
32
 (Table S3). To 

facilitate stable clustering, we also identified a set of 46 known genes enriched in the 

MCL1-M low MM (named MCL1-M low MM identifier, Figure S2 and Table S4). 

The MCL1-M low MM identifier included important regulators of B cell identity 

(PAX5 
33
), B cell receptor signalling (PAK1, PLCG2, STAP1 

34
), B cell survival 

(TNFRSF13C (BAFFR) 
35
), Wnt signalling (CCND1, FRZB, TRABD2A 

36
) and 

NF-kB signalling (IRAK2 
37
). Based on the signatures of the MCL1-M and MCL1-M 

low MM identifier, we performed unsupervised consensus clustering 
25
 to robustly 

assign 1650 newly diagnosed MM in the above-mentioned data sets into MCL1-M 

high or MCL1-M low MM subtypes, with 44.7% of all MM in the MCL1-M high 

subtype and the remaining in the MCL1-M low subtype (Figure S3 and Figure S4). 

 

Prognostic and predictive features of MCL1-M signature-based MM clustering 

Since prognosis is an integral outcome determined by disease biology, treatment 

regimen, and length of follow-up, we applied reiterative survival analysis to assess the 

prognostic distinctions between patients with MCL1-M high or MCL1-M low MM. 

Patients in GSE19784 were randomly assigned to VAD (vincristine, doxorubicin, and 

dexamethasone) or PAD (bortezomib, doxorubicin, and dexamethasone) treatment 
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arms in the phase III HOVON-65/GMMG-HD4 trial 
19
. In the follow-up years five till 

eight, patients with MCL1-M high MM showed significant poorer OS compared with 

patients with MCL1-M low MM (Figure 1A and 1B). Among the patients treated 

with TT2 regimen in GSE2658, the same prognostic trend was found in follow-up 

years three and four (Figure 1C and 1D). MMRF data set included patients treated 

with diverse regimens, the poor prognosis in patients with MCL1-M high MM was 

found between the follow-up years two to four (Figure 1D and 1F). These findings 

show that due to the difference in treatment regimens, the prognostic impact between 

MCL1-M high and MCL1-M low MM groups was manifested at different follow-up 

periods.  

We further integrated MCL1-M clustering-based survival analysis with treatment 

arms in GSE19784 
19
. Compared with the VAD treatment, PAD treatment improved 

progression-free survival (PFS) in patients of MCL1-M high MM in follow-up years 

five to eight (Figure  2A and 2B) (median PFS 19 v 27 months; HR = 1.58; 95% CI = 

1.07 to 2.42; P = 0.02), the improvement in OS was however only observed in follow-

up years three to four (Figure  2C and  2D). In contrast, in MCL1-M low MM 

patients, no difference in PFS or OS was observed between the VAD and PAD 

treatment arms (Figure 2E and 2F). The superior outcome with bortezomib-based 

treatment was reported in patients with del(13q14) and del(17p13) 
19,38

. Though more 

MCL1-M high MM harbored del(13q14) (P < 0.0001, x
2
 test, Table S5), del(17p13) 

occurred at comparably low frequencies in both MCL1-M high and MCL1-M low 

MM.  
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Collectively, these findings show that MM with high MCL1-M signature is 

characterized by poorer prognosis and might benefit from bortezomib-based treatment 

during the induction and maintenance phases.  

 

Comparison of MCL1-M signature-based classification with other classification 

schemes or MCL1 expression alone     

We compared MCL1-M signature-based MM classification with the previously 

reported prognostic classification schemes. Analyses of the β2-microglobulin, 

albumin, and LDH levels in the GSE19784 and MMRF MM samples in MCL1-M 

high and low groups demonstrated that MCL1-M clustering provides a different result 

from the R-ISS classification 
14
 (Table S6).  Comparison with the prognostic MM 

clusters defined by Zhan et al. 
5
 showed that the good prognostic CD-1, CD-2, and 

HY clusters predominantly contained MCL1-M low MM, and most of the MM in the 

poor prognostic PR, MS, and MF clusters showed the MCL1-M high signature (Table 

S7). However, most good prognostic LB MM showed the MCL1-M high signature. In 

GSE19784, the LB cluster was not confirmed 
4
. The assignments of the same MM 

samples into the 10 clusters reported in GSE19784 
4
 did not correlate with the MCL1-

M clustering (Table S8). Unlike the distinct response to VAD/PAD treatment arms 

between patients with MCL1-M high or MCL1-M low MM, nine of the ten previously 

defined clusters (except the MF cluster) 
4
 did not show distinct response to treatment 

regimens with or without bortezomib (Figure S5).   
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The prognostic impact of MCL1 expression has been controversial 
39,40

. Based on 

the results shown in Figure 1, we used univariate Cox regression analysis to assess 

the prognostic effect of all MCL1-M members. In both GSE2658 and GSE19784 data 

sets, MCL1 expression alone was not prognostic, but the other 15 MCL1-M members, 

including key regulators of osteoclast formation (ANXA2 
41
), chromatin structure 

(ANP32E 
42
 and H3F3A 

43
) and oncogenic transformation (TPM3 

44
) were strongly 

prognostic (Table S9). Thus, though the prognostic impact of individual MCL1-M 

members may vary, the expression level of the whole MCL1-M is a robust prognostic 

marker.    

 

Plasma cell development-related transcriptomic features of MCL1-M 

signature-defined MM subtypes  

 To study the correlation of the MCL1-M signature-defined MM molecular 

subtypes with the B cell to plasma cell differentiation stages, we performed GSEA 

analysis to compare the enrichment of gene signatures characteristic of the different 

stages of human plasma cell development between MCL1-M high and MCL1-M low 

MM 
45
. Human B cell differentiation into plasma cells can be divided into eight stages 

with distinct gene expression signatures: naïve B cells, centroblasts, centrocytes, 

memory B cells, preplasmablasts, plasmablasts, early plasma cells, and bone marrow 

plasma cells 
46-49

. In all five data sets analyzed, gene signatures characteristic of 

pre-plasmablasts (as defined by the molecular atlas of human B cell differentiation 
46
) 

was consistently enriched in MCL1-M high MM (Figure 3A, Figure S6 and Table 
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S10). Further, large subsets of both MCL1-M and MCL1-M low MM identifier 

showed enriched expression in the GC B cells of the murine transcriptome data set for 

B cell to plasma cell development, GSE60927 
50
 (Figure 3B and 3C). MCL1-M low 

MM identifier genes, including PAX5, showed high expression in B cell populations 

(Figure 3C). MCL1-M low MM showed relatively enriched expression of the PAX5 

targets CD19, FCER2(CD23), CD40, CD79A and STAP1 (Figure S6). Together, the 

enrichment of a pre-plasmablast signature in MCL1-M high MM and aberrant 

expression of B cell genes in MCL1-M low MM suggest distinct involvement of 

plasma cell differentiation pathways in these two MM subtypes.          

 

Characteristic somatic copy number alterations (SCNA) in MCL1-M high and 

low MM subtypes  

To characterize the genomic abnormalities in the MCL1-M high and low MM 

subtypes, we analyzed fluorescent in situ hybridization (FISH) data of cytogenetic 

abnormalities in GSE19784 samples 
4,19

. 1q21 gain was identified in 65% and 16% of 

the MCL1-M high and MCL1-M low MM, respectively (P = 0.0001, Chi-square test, 

Table S5). Conversely, 68% of the MCL1-M low MM and 38% of the MCL1-M high 

MM harbored trisomies of chromosome 9, 11 and 15 (P = 0.0002, Chi-square test, 

Table S5).     

We further analyzed myeloma-characteristic SCNAs in MCL1-M 

signature-defined MM subtypes using the GSE29023 (n = 115) and GSE26863 (n = 

180) array CGH data. In both data sets, 18% of the MCL1-M low subtype harbored 1q 
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gain; but up to 77% of the MCL1-M high MM harbored 1q gain. Further, high copy 

gain (defined by more than three copies of 1q) was found nearly exclusively in 

MCL1-M high MM (Table S5 and Figure S7). In both GSE29023 and GSE26863, 

the ratio between the MCL1-M expression average and the expression average of 

MCL1-M low MM identifier in the MCL1-M high MM without 1q gain was 

significantly higher than that in all MCL1-M low MM (Figure S8), indicated that 

mechanisms other than 1q gain, such as bone marrow microenvironment 
31
, might 

contribute to up-regulated expression of MCL1-M genes in those MCL1-M high MM 

samples without 1q gain. In all three data sets analyzed, 13q14 loss occurred more 

frequently in MCL1-M high MM, whereas trisomies of chromosome 9, 11 and 15 

were more frequent in MCL1-M low MM (Table S5).   

Five other key genomic alterations (IgH split and deletions of 1p, 8p, 16q, and 

17p) occurred with comparable frequencies in MCL1-M high and MCL1-M low MM 

subtypes (Table S5 and Table S11). Further, occurrence of the recently reported MM 

driver gene mutations KRAS, NRAS, BRAF, FAM46C, and TP53 
22,51

 was not clearly 

associated with either subtype (Table S12). These findings together demonstrate 1q 

gain as the most recurrent somatic genomic alterations in MCL1-M high MM.   

 

1q gain as an early and clonal event during MM development 

Previous reports of FISH analysis in unrelated patients have suggested 1q gain as 

a marker of MM progression 
28,52

. To infer the temporal order of 1q gain and other 

characteristic MM genomic abnormalities, we employed BubbleTree 
53
 to perform 
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clonality analysis with the whole exome sequencing data for 112 MM samples 

reported by Lohr et al 
22
. Among them, we identified thirty-nine samples harboring 1q 

gain, with 12 of them harboring high gain of 1q, for the clonality analysis (Table 

S13). 

The number of clones with the SCNAs identified above ranged from 1 to 4; 18 

MM samples harbored only one clone. Most of the major SCNAs appeared to be 

highly clonal. Thirteen, seven, and one MM samples harbored two, three and four 

clones, respectively; most SCNAs in samples with two multi-clones were clonal. 1q 

gain was clonal in 36 of the 39 MM samples analyzed. In three samples with 

subclonal 1q gain, the ploidy for 1q was 4 or 5 (Table S13). These samples might 

have initially gained one (clonal) 1q segment and subsequently gained additional 

(subclonal) 1q segments (Figure S9 and Table S14). A representative sample 

(MMRC0571) with clonal 1q gain is shown in Figure 4. Three clones were identified. 

The triploid heterozygous 1q gain belonged to the major clone harboring most copy 

number variations (gain of 1q, trisomy of odd-numbered chromosomes, and loss of 

13q). This major clone made up ca. 90% of all cells, which also harbored the NRAS 

mutation.   

We further assessed the cancer cell fraction (CCF) containing the driver 

mutations in MM harboring the 1q gain. Only a fraction of MM samples with 1q gain 

harbored these mutations, and they were either clonal or subclonal (Figure 4 and 

Figure S10). These findings suggest that 1q gain and other large SCNAs occurred 

earlier than the driver mutations, and nearly all neoplastic cells of patients with a 1q 
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gain harbored the 1q gain. Hence, MCL1-M members located in 1q may exhibit 

upregulated expression already in the early phases of MM development.   
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Discussion 

  

 The biological and clinical heterogeneity hinders elucidation of MM biology and 

treatment of MM patients. Our findings show that MCL1-M signature-based 

classification scheme assigns MM into two biologically and clinically separate 

subtypes.  The MCL1-M contains a set of previously inadequately recognized, early 

acting drivers of MM pathogenesis that are consistently co-expressed with the key 

regulator of plasma cell survival, MCL1. The two molecular subtypes showed distinct 

prognoses. Patients with MCL1-M high MM responded to bortezomib-based 

treatment, whereas patients with MCL1-M low MM did not. The two MM subtypes 

may involve distinct pathways of plasma cell development and thus require different 

treatment strategies. These findings constitute a step toward establishing personalized 

care for MM patients.  

 The introduction of proteasome inhibitors and immunomodulatory drugs has 

significantly improved the median survival of MM patients. However, treatment 

responses in individual MM patients have been highly variable and unpredictable 
19
. 

Previously reported GEP signatures have limited power in predicting  treatment 

response 
15
. Our analysis of MCL1-M signature in the phase III HOVON-65/GMMG-

HD4 trial showed that only the patients with MCL1-M high MM benefited from 

bortezomib-based treatment, whereas those patients with MCL1-M low MM did not 

respond to bortezomib-based treatment. To the best of our knowledge, this is the first 

MM GEP signature enabling potential treatment decisions in newly diagnosed 

patients. Furthermore, whereas correlation to plasma cell development was unclear for 
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the previously defined MM molecular subtypes 
4-6,8-13,54

, MCL1-M signature-based 

MM molecular subtypes showed distinct involvement of plasma cell differentiation 

pathways. Our findings appear to be in contrary with a report by Leung-Hagesteijn et 

al. on the worse repose to bortezomib in MM with pre-plasmablast features 
55
. The 

crucial differences between these two studies could be the selection of patients. The 

study by Leung-Hagesteijn et al. utilized the gene expression profiling data of bone 

marrow CD138
+
 plasma cells and the treatment response data from the relapsed 

patients with 1 to 3 prior therapies 
9
. In contrast, data from newly diagnosed and 

untreated MM were used in our study.   

 The unique treatment responses between the two MM subtypes may arise from 

the features of MCL1-M.  MCL1-M captures both MM cell-intrinsically acting 

signals and the signals regulating the interaction between MM cells with bone marrow 

microenvironment. MCL1 itself is a key regulator of plasma cell survival 
27
. Other 

MCL1-M members regulate chromatin structure (ANP32E 
42
 and H3F3A 

43
) and 

oncogenic transformation (TPM3 
44
), as well as cytokine signaling (IL6R 

56
) and  

osteoclast formation (ANXA2 
41
). Further, MCL1-M members are co-expressed in 

murine GC B cells, and frequently amplified in MM genome with a gene dosage-

dependent expression. These findings suggest that an integral activity of MCL1-M 

may drive the development of MM.  

Of the 87 known genes in MCL1-M, 63 genes (including MCL1 itself) are located 

on 1q. Gain of this chromosomal region is a common finding in MM and is associated 

with MM progression and short patient survival 
28,52

. To examine the temporal order 

Page 17 of 117

John Wiley & Sons

Genes, Chromosomes & Cancer

This article is protected by copyright. All rights reserved.



18 

 

of 1q gain and the other key genomic abnormalities in MM, we employed new 

genomic analysis approaches to assess the clonal feature of the characteristic SCNAs 

in MM harboring 1q gain, using the exome sequencing data from a large number of 

MM samples. In the majority of the MM with high MCL1-M signature, 1q gain was 

clonal, indicating that the 1q gain might have occurred together with the other SCNAs 

during a short period of catastrophic genomic crisis at an early stage of MM 

development. The enrichment of a pre-plasmablast signature in MCL1-M high MM 

suggests that this genomic crisis occurred in a B cell clone during GC development. 

Unlike the clonal nature of 1q gain in nearly all MCL1-M high MM, driver mutations 

in NRAS, KRAS, BRAF, FAM46C, and TP53 genes occurred in a small fraction of 

MM samples, and they were clonal or subclonal in individual MM samples, as was 

also reported previously 
22,51

. Thus, 1q gain and the upregulation of MCL1-M may 

play an initiating role in MM pathogenesis whereas the relatively less frequent clonal 

or subclonal driver mutations 
22,51

 may have been acquired during MM progression. 

Over 20% of the MCL1-M high MM did not harbor 1q gain. In such MM 

samples, signals derived from BM microenvironment may have contributed to high 

MCL1-M signature 
31
.  This coincides with the facts that 31 MCL1-M members are 

not located on 1q, and that MCL1 expression alone was not prognostic, but the 

expression levels of 15 other MCL1-M members, which are not all located on 1q, 

were prognostic.   

Though the distinct treatment responses between the two MM subtypes require 

further validation in independent clinical trials, and mechanisms of better response to 
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bortezomib-based therapy in MCL1-M high MM are currently unknown, diagnosis of 

MM according to MCL1-M signature-based classification scheme could support the 

clinical trials aiming to define the efficacy of new proteasome inhibitors 
57
. MCL1-M 

signature-based classification scheme may greatly facilitate the etiology studies in the 

context of plasma cell development and the search of subtype-specific therapies. In 

summary, our findings suggest that MCL1-M signature-based MM classification 

constitutes a solid framework toward establishing personalized care of MM patients 

and understanding of MM etiology.        
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Figure legends 

Figure 1. Prognostic impact of the MCL1-M signature-based MM clustering. Kaplan-

Meier plots show significant differences in OS between patients with MCL1-M high 

and those with MCL1-M low MM in data sets GSE19784 (A and B), GSE2658 (C 

and D), and MMRF (E and F). The two graphs for each data set represent the first and 

last follow-up years with significant differences in OS. The median OS for patients of 

MCL1-M high MM in GSE19784 was 55 months; the median OS for patients in 

GSE2658, MMRF and the patients of MCL1-M low MM in GSE19784 was not 

reached at the time of analysis.  

Figure 2. Distinct treatment responses in patients with MCL1-M high or MCL1-M 

low MM in the HOVON-65/GMMG-HD4 trial (data set GSE19784). Kaplan-Meier 

plots from (A) to (D) indicating the first and the last follow-up years with significant 

difference in PFS or OS in patients with MCL1-M high MM following their random 

assignment into the VAD (without bortezomib) or PAD (with bortezomib) treatment 

arm are shown.  No such difference in PFS (E) or OS (F) was observed in patients 

with MCL1-M low MM.  

Figure 3. Transcriptomic features in MCL1-M signature-defined MM subtypes in the 

context of B cell to plasma cell differentiation. GSEA plots (A) demonstrating 

enrichment of the pre-plasmablast gene set in the MCL1-M high MM in data sets 

GSE2658 and GSE19784 are shown. Large subsets of both MCL1-M (B) and 

MCL1-M low identifiers (C) were enriched in the GC B cells in a murine 

transcriptome data base for B cell to plasma cell differentiation, GSE60927. 
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Compared to plasma cell populations, MCL1-M low identifiers showed higher 

expression in the B cell populations. One-way anova test was used to compare the 

expression average of MCL1-M or MCL1-M low identifiers between the cell 

populations (***: p < 0.0001). FoB, MZB, B1, GCB, SplPB, SplPC, and BMPC stand 

for follicular B cells, marginal-zone B cells, B1 cells, GC B cells, spleen plasmablasts, 

spleen plasma cells, and bone marrow plasma cells, respectively.   

Figure 4. Clonality analysis of characteristic SCNAs and driver mutations in MM 

samples with a clonal 1q gain. (A) R-HDS plot generated by BubbleTree of a 

representative MM sample (MMRC0571) with a clonal 1q gain. The R score 

represents the copy number ratio between the tumor and a matched normal sample; 1, 

<1, and >1 indicate normal copy number, loss, or gain of chromosome segments, 

respectively. HDS is a measure for the deviation of heterozygous state; 0, normal 

circumstance; >0, gain, loss, or LOH. The higher the HDS, the more cells carry the 

genomic changes. The branches of the tree represent pre-build copy number states. B, 

AB, BB, ABB, and BBB represent one copy loss, normal disomy, LOH, heterozygous 

gain, and homozygous gain, respectively. The numbers labelled on the branch 

represent the frequency of SCNA occurrence. Each circle on the plot corresponds to a 

chromosome segment. SCNAs with a similar frequency tend to belong to the same 

clone. (B) Clonal structure of this sample inferred by the BubbleTree analysis. In the 

sample, triploid heterozygous 1q gain belongs to the major clone harboring most 

SCNAs (gain of 1q, 5, 7, 9, 15, and 19p; and loss of 13). This major clone comprises 

ca. 90% of cells. The other two subclones, marked by the losses of 4q and 8p, or 8q 
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gain, make up 77% and 46% of cells, respectively. (C) Inferred temporal order of the 

major SCNAs and NRAS mutation in this sample.  
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